Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Geroscience ; 45(1): 385-397, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35974129

RESUMO

Canagliflozin (Cana), a clinically important anti-diabetes drug, leads to a 14% increase in median lifespan and a 9% increase in the 90th percentile age when given to genetically heterogeneous male mice from 7 months of age, but does not increase lifespan in female mice. A histopathological study was conducted on 22-month-old mice to see if Cana retarded diverse forms of age-dependent pathology. This agent was found to diminish incidence or severity, in male mice only, of cardiomyopathy, glomerulonephropathy, arteriosclerosis, hepatic microvesicular cytoplasmic vacuolation (lipidosis), and adrenal cortical neoplasms. Protection against atrophy of the exocrine pancreas was seen in both males and females. Thus, the extension of lifespan in Cana-treated male mice, which is likely to reflect host- or tumor-mediated delay in lethal neoplasms, is accompanied by parallel retardation of lesions, in multiple tissues, that seldom if ever lead to death in these mice. Canagliflozin thus can be considered a drug that acts to slow the aging process and should be evaluated for potential protective effects against many other late-life conditions.


Assuntos
Canagliflozina , Hipoglicemiantes , Camundongos , Masculino , Feminino , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Fígado , Rim , Glândulas Suprarrenais
2.
Aging Cell ; 20(5): e13328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788371

RESUMO

In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the "non-feminizing" estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p < 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging.


Assuntos
Estradiol/farmacologia , Longevidade/efeitos dos fármacos , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Caracteres Sexuais
3.
Aging Cell ; 19(11): e13269, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145977

RESUMO

To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, ß-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Longevidade/efeitos dos fármacos , Sirolimo/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Feminino , Masculino , Camundongos , Fatores Sexuais , Sirolimo/farmacologia
4.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32990681

RESUMO

Canagliflozin (Cana) is an FDA-approved diabetes drug that protects against cardiovascular and kidney diseases. It also inhibits the sodium glucose transporter 2 by blocking renal reuptake and intestinal absorption of glucose. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing Cana at 180 ppm at 7 months of age until their death. Cana extended median survival of male mice by 14%. Cana also increased by 9% the age for 90th percentile survival, with parallel effects seen at each of 3 test sites. Neither the distribution of inferred cause of death nor incidental pathology findings at end-of-life necropsies were altered by Cana. Moreover, although no life span benefits were seen in female mice, Cana led to lower fasting glucose and improved glucose tolerance in both sexes, diminishing fat mass in females only. Therefore, the life span benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in male mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e., slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.


Assuntos
Glicemia/análise , Canagliflozina/farmacologia , Intolerância à Glucose/tratamento farmacológico , Longevidade , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fatores Sexuais
5.
Aging Cell ; 18(3): e12953, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916479

RESUMO

Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases.


Assuntos
Envelhecimento/metabolismo , Suplementos Nutricionais , Glicina/farmacologia , Longevidade/efeitos dos fármacos , Adenomatose Pulmonar/epidemiologia , Envelhecimento/efeitos dos fármacos , Animais , Aspirina/farmacologia , Dieta , Feminino , Inulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , para-Aminobenzoatos/farmacologia
6.
Aging Cell ; 18(2): e12898, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30688027

RESUMO

To follow-up on our previous report that acarbose (ACA), a drug that blocks postprandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 400, 1,000 (the original dose), and 2,500 ppm, using genetically heterogeneous mice at three sites. Each dose led to a significant change (by log-rank test) in both sexes, with larger effects in males, consistent with the original report. There were no significant differences among the three doses. The two higher doses produced 16% or 17% increases in median longevity of males, but only 4% or 5% increases in females. Age at the 90th percentile was increased significantly (8%-11%) in males at each dose, but was significantly increased (3%) in females only at 1,000 ppm. The sex effect on longevity is not explained simply by weight or fat mass, which were reduced by ACA more in females than in males. ACA at 1,000 ppm reduced lung tumors in males, diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced blood glucose responses to refeeding in males, and improved rotarod performance in aging females, but not males. Three other interventions were also tested: ursolic acid, 2-(2-hydroxyphenyl) benzothiazole (HBX), and INT-767; none of these affected lifespan at the doses tested. The acarbose results confirm and extend our original report, prompt further attention to the effects of transient periods of high blood glucose on aging and the diseases of aging, including cancer, and should motivate studies of acarbose and other glucose-control drugs in humans.


Assuntos
Acarbose/farmacologia , Envelhecimento Saudável/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Acarbose/administração & dosagem , Acarbose/análise , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes
8.
Radiat Res ; 188(2): e54-e75, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28605260

RESUMO

In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , National Institute of Allergy and Infectious Diseases (U.S.) , Lesões por Radiação/terapia , Animais , França , Regulamentação Governamental , Humanos , National Institute of Allergy and Infectious Diseases (U.S.)/legislação & jurisprudência , Lesões por Radiação/patologia , Estados Unidos
9.
Ann N Y Acad Sci ; 1386(1): 30-44, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27907230

RESUMO

Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.


Assuntos
Síndrome da Imunodeficiência Adquirida , Envelhecimento , Biomarcadores Tumorais , Diabetes Mellitus , Neoplasias , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/metabolismo , Síndrome da Imunodeficiência Adquirida/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Doença Crônica , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
10.
Radiat Prot Dosimetry ; 171(1): 85-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27590469

RESUMO

The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats.


Assuntos
Planejamento em Desastres/organização & administração , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos , Terrorismo/prevenção & controle , Animais , Planejamento em Desastres/legislação & jurisprudência , Emergências , Humanos , Relações Interinstitucionais , Modelos Organizacionais , Desenvolvimento de Programas , Saúde Pública , Radiometria/métodos , Terrorismo/legislação & jurisprudência , Estados Unidos , United States Dept. of Health and Human Services
11.
Int J Radiat Biol ; 92(2): 59-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26857121

RESUMO

PURPOSE: An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. METHODS: Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. RESULTS: The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. CONCLUSIONS: For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.


Assuntos
Laboratórios/estatística & dados numéricos , Exposição à Radiação/análise , Contagem Corporal Total/instrumentação , Irradiação Corporal Total/instrumentação , Absorção de Radiação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Exposição à Radiação/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total/métodos , Contagem Corporal Total/estatística & dados numéricos , Irradiação Corporal Total/estatística & dados numéricos
12.
J Gerontol A Biol Sci Med Sci ; 69 Suppl 1: S1-3, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24833579

RESUMO

Population aging is unprecedented, without parallel in human history, and the 21st century will witness even more rapid aging than did the century just past. Improvements in public health and medicine are having a profound effect on population demographics worldwide. By 2017, there will be more people over the age of 65 than under age 5, and by 2050, two billion of the estimated nine billion people on Earth will be older than 60 (http://unfpa.org/ageingreport/). Although we can reasonably expect to live longer today than past generations did, the age-related disease burden we will have to confront has not changed. With the proportion of older people among the global population being now higher than at any time in history and still expanding, maintaining health into old age (or healthspan) has become a new and urgent frontier for modern medicine. Geroscience is a cross-disciplinary field focused on understanding the relationships between the processes of aging and age-related chronic diseases. On October 30-31, 2013, the trans-National Institutes of Health GeroScience Interest Group hosted a Summit to promote collaborations between the aging and chronic disease research communities with the goal of developing innovative strategies to improve healthspan and reduce the burden of chronic disease.


Assuntos
Envelhecimento , Pesquisa Biomédica/tendências , Doença Crônica/epidemiologia , Geriatria/métodos , Expectativa de Vida/tendências , Congressos como Assunto , Saúde Global , Humanos , Morbidade/tendências
13.
Drug Dev Res ; 75(1): 23-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24648046

RESUMO

The possibility of a public health radiological or nuclear emergency in the United States remains a concern. Media attention focused on lost radioactive sources and international nuclear threats, as well as the potential for accidents in nuclear power facilities (e.g., Windscale, Three Mile Island, Chernobyl, and Fukushima) highlight the need to address this critical national security issue. To date, no drugs have been licensed to mitigate/treat the acute and long-term radiation injuries that would result in the event of large-scale, radiation, or nuclear public health emergency. However, recent evaluation of several candidate radiation medical countermeasures (MCMs) has provided initial proof-of-concept of efficacy. The goal of the Radiation Nuclear Countermeasures Program (RNCP) of the National Institute of Allergy and Infectious Diseases (National Institutes of Health) is to help ensure the government stockpiling of safe and efficacious MCMs to treat radiation injuries, including, but not limited to, hematopoietic, gastrointestinal, pulmonary, cutaneous, renal, cardiovascular, and central nervous systems. In addition to supporting research in these areas, the RNCP continues to fund research and development of decorporation agents targeting internal radionuclide contamination, and biodosimetry platforms (e.g., biomarkers and devices) to assess the levels of an individual's radiation exposure, capabilities that would be critical in a mass casualty scenario. New areas of research within the program include a focus on special populations, especially pediatric and geriatric civilians, as well as combination studies, in which drugs are tested within the context of expected medical care management (e.g., antibiotics and growth factors). Moving forward, challenges facing the RNCP, as well as the entire radiation research field, include further advancement and qualification of animal models, dose conversion from animal models to humans, biomarker identification, and formulation development. This paper provides a review of recent work and collaborations supported by the RNCP.


Assuntos
Serviços Médicos de Emergência , National Institute of Allergy and Infectious Diseases (U.S.) , Desenvolvimento de Programas/economia , Estoque Estratégico , Animais , Serviços Médicos de Emergência/economia , Serviços Médicos de Emergência/métodos , Serviços Médicos de Emergência/organização & administração , Humanos , National Institute of Allergy and Infectious Diseases (U.S.)/economia , National Institute of Allergy and Infectious Diseases (U.S.)/organização & administração , Liberação Nociva de Radioativos , Projetos de Pesquisa , Apoio à Pesquisa como Assunto , Estoque Estratégico/economia , Estoque Estratégico/métodos , Estoque Estratégico/organização & administração , Terrorismo , Estados Unidos , Populações Vulneráveis
14.
J Res Natl Inst Stand Technol ; 118: 403-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26401441

RESUMO

Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies.

15.
J Exp Med ; 202(10): 1307-11, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16301740

RESUMO

Animal models have been instrumental in increasing the understanding of human physiology, particularly immunity. However, these animal models have been limited by practical considerations and genetic diversity. The creation of humanized mice that carry partial or complete human physiological systems may help overcome these obstacles. The National Institute of Allergy and Infectious Diseases convened a workshop on humanized mouse models for immunity in Bethesda, MD, on June 13-14, 2005, during which researchers discussed the benefits and limitations of existing animal models and offered insights into the development of future humanized mouse models.


Assuntos
Modelos Animais de Doenças , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA